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A new algorithm for the cafculation of particle trejectories is introduced, The algorithm
combines second-order accuracy in the real frequency with third-order user-adjustable
attenuation. It requires little storuge of data from previous time levels. The method was
designed [or use in implicit particle-in-cell plasma simulation codes, and this application is
treated in detnil. It may elso prove useful in other applications where one seeks to preserve
the nccoracy of low-frequency oscillations while ropidly dumping under-resoived high
frequency motions, e.g., solution of the feld equations in electromagnetic particle endes.
An explicit variation, wherein future quantities are obtained by extrapolation, can prov:de :
attenuntion but not large-timestep stobility.  © 1990 Academic Press, Inc.

I. INnTRODUCTION

An implicit particle-in-cell simulation should ideally employ a time advancement
scheme: which accurately follows motions which are well resolved while rapidly
damping under-resolved modes. Storage limitations and algorithmic complexity
generally preclude use of a high-order difference scheme. Indeed, schemes in com-
mon use include one which is almost time-centered but employs a small bias toward
backward time differencing [17; this leads to a relative damping rate y/w, which is
proportional to wq 4t, where 4¢ is the timestep size and @, the analytical mode
frequency. Thus, the scheme tends to be somewhat dissipative even for very low
frequencies. Another popular algorithm, the d1 scheme [2], imposes damping
which scales as the cube of the timestep size; however, it has no -adjustable
parameters, and so the user has no control aver the amount of damping introduced
except by varying the timestep size, The damping may be appreciable for modes
with @y At < 1, even though these modes are “resolved™ with ten or more steps per
orbit. In some cases this fixed level of demping may be quite large [3]. If the
simulation parameters are not carefully chosen or the system is sufficiently
inhomogeneous, an overly rapid decay of phase space structure may result, so that
collective behaviors of real interest are not observable.

Here a new time advancement algorithm is introduced. The algorithm combines
third-order damping with a user-adjustable attenuation. Formally, it is a “blend” of
292

0021-9991/90 $3.00

Copyeight © 1990 by Academic Press, Inc,
All rights of seproduction in any form reserved.



A MOVER WITH ADIUSTABLE DAMPING " ) ' 203

the d1 and ¢0 schemes [2], with the algorithmic steps arranged so as to require no
storage above that already required by the d1 scheme. Codes which employ the
d1 scheme, such as TESS [4] and AVANTI [5], can be readily modified to
incorporate this generalized ‘algorithm. In Section II below, the basic algorithm is
introduced. Two variants are presented,.one with position x and velocity v offset
from each other in time by a haif step, the other with them both centered at the
same time levels. In Section II1, a practical implementation with offset centering is
presented, and in Section IV a similar scheme with integral centering is outlined.

Also derived (in Sections V and VI) are approximate and exact dispersion tela-
tions for motion in a harmonic well. It is shown that the 1 scheme, as it is usually
implemented, admits numerical instability in such a well for large enough timestep.
In self-consistent direct-implicit plasma simulation codes [6-8] this instability is
generally suppressed by the reduction in field magnitude arising from the effective
susceptibility .used; however, the suppression may be incomplete under certain
circumstances. .

Tests of the new mover, as applied to motion in a fixed potential, appear in
Section VII, and full direct-implicit simulations are exhibited in Section VIIL In
Section IX, procedures for non-constant timestep and damping parameter are
presented. Finally, Section X contains a discussion of some implications of this
work. That, last section also outlines how the method may be applied to the
solution of Maxwell’s equations and briefly describes an explicit variant.

II. THE Basic ALGORITHM
The most .elementary form of the algorithm applies to a second-order differential

equation- in the position'x of a particle; it makes no reference to a velocity. The
equation to be solved is:

< dPx(ty ‘
—eax(n, 0. 0

One begins with a conceptual implicit difference equation which employs the
acceleration (x, ¢) at the advanced time level without specifying how it is abtained.
Denoting time levels by sub_sc_mpts the algorithm is

n+! —2x +Yn—£ rz+1_|_-z"""1. - (7)
ar 2.7 : .

where

_z(ﬂ/2)a,,+(1—eig)a,,;i R (3a)
&, =(1=8/2)a,+(6/2)d,_>. - -~ -~ (3b)
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Here g, is the acceleration obtained by evaluating the force field at x,; the particle’s
position at time level #, In an unmagnetized one-dimensional particle-in-ceil plasma
simulation, a,=(g/m) E,(x,), with g the particle charge, . m the mass, and E the
electric field, The &'s are lag-averaged accelerations. The A’s are temporary quan-
tities defined for convenience. 8 is the user-specified damping parameter; for §=1
the 41 scheme of [2] is recovered, whﬂe for 8=0 the reversible, undamped c0
scheme (with c, =1} resuits.

From this form one can derive several possible sets of first-order equatwns which
incorporate a velocity. Perhaps the most familiar form involves offset x and » in an
expression reminiscent of the “leapfrog™ advance:

U,,+1/2#U,,_1,3+(AI/Z][H,,+1+E,,_1:[ (43-)

xn+l=.xn+'drun+.1,fl (4b)

In the absence of a magnetic force, the velocity is just a “bookkeeping” quantity

which allows one to split the single second-order equation (2) imto a pair of

first-order equations. Equations (4) are algebraically identical to Eq. (2); to see

this, shift Eq. (4b) by one time level and subtract from the original, then use
Eq. (4a) to eliminate the velocities from the resuit.

One can readily show that the above scheme is formaily “time- centered < that 1s,

that the acceleration term in the right member of (2) or (4a) is defined at time level

(abbreviated hereafter as “t1") n. Since it is an average of a,,, {which is clearly a

tl n4-1 quantity) and A,_,, one need only show that the latter is truly a tin—1
quantity. To see this, begin with Eq. (3b); one writes

td, )= (1—8/2)[n]+ (6/2)[}(a,_,)—1]. (3)
Solving, one obtains ' ‘
&, _y) =n—(8/2)/(1—6/2). . (6)
Then,
tl(A, - 1) (6/2) [+ (1 —6/2)[rn — (B/2)/(1 —8/2) — 1]
—aml, o

which is the desired. result.
One can also write the adjustable mover in a form wherem both x and v are
centered at integral times. The algorithm becomes

Busr =0, + (42, +4,] o (8a)
x,,+,=x,,+dtu,,+(At2/2)a,,+l. (gb)

This scheme is also algebraically equivalent to Egq. (2); it too is formally time
centered, since v, + (442} a,,, i 2 tln+1/2 quantity (for constant acceleration).
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The above schemes generalize to higher dimensionality in a straiphtforward
manner, To introduce a magnetic field in the offset mover one can-use a vector form
of Eq. (4b) along with a generalization of Eq. (4a),

Ver12=Yeo1at (dt/2)fa, +E_n-—; F(Var1pt Voo 1) X 2, (9)

where 2, = gB,(x,)/mc is the (vector) gyration frequency. The magnetic rotation in
Eq. (9} is undamped but implicit; except [or phase errors it yields the correct gyra-
tion for arbitrarily large timestep, In most circumstances this bahavmr is preferable
to decaying gyro-motion.

One can transform this into a scheme w1th an integral velocity, which is defined
by the hali-advance:

V,.;=V,,_1/3+ (AI/E)[KM—I +vrl—~l/2x‘Qn]' (10)
Subtracting Eq. (10) from Eq. (9) one obtains
V11+l/izvr1+(dt/g)[an-z-l'i'vn—i-llzxgnl (11)

and re-writing Eq. (10) shifted by one time level, one obtains a pair of steps which
replace Eq. (8a), namely Eq. (11) followed by

_V,,+1=V"+U_q_+(ﬂf/Z)[Kn—}-V“.,_l/:)(Qn_,_]]. (12)

TII. A PracTicaL DIFFERENCE SCHEME: OFFSET CENTERING OF X AND o

A first practical simulation algorithm employs staggered time levels for x and .
To derive a practical mover suitable for (e.g.) direct-implicit plasma simulation one
seeks to separate the effects of the future electric field from those of known fields
and to employ a velocity advance to a ¥ which invelves only explicitly known
quantities. Setting a,, . ; to zero in Eq. (9) leads to

Varrp=VYo_ 1o+ (d2)[A,_ 4 (o 1pH Vo 12) X 2,], (13)
and subtracting Eq. (13) from Eq. {9) gives
5vn+1f2’Evn+1f2_i}n+lf'2=(Ar/z)[an-l-l+5vn+1/2xgu:|3 (14)

This apportionment of the electric acceleration between the two velocity-advance
steps assures that x,,,=x,+4tv,.,,, i€, that v,,,» is a true half-integral
velocity. This makes incorporation of a magnetic field straightforward: only the
lagged electric force differs from (e.g.) those of Ref. [5], and the method presented
there is directly applicable. '

With this information one can write the complete algorithm. One enters a step
with partlcle quantities ¥, _ t2s Xy f,-2, Q,_,, and with E,, B, on the mesh.
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ALGORITHM 1.
The final-push is: :
(1) a,=(g/m)E(&,) (interpolation of field from mesh)
(2) S¥uo1p= (A2, + 8%, 1px 2y 1] '
(3) Viucrp=Vo_1ptdv,_1p
(4) x,=X,+dtdv,_n
(3) A,_,=(82)a,+(1-6/2)8,
(6) ',. 1=(1-62)a,+(6/2)4,_;
(7} ,={g/mc)B,(x,) (interpolation of ficld from mesh).

The pre-push is:
(8) v|'1+ = Vi [ 1] + (A t/l)[z—&",_ 1 + (iin+ £/2 + Vo 1/2) x 'Qu]
(9) ir=+1=xr=+dtvn+1!2‘

II' a direct-implicit field solution is to be carried out, the “extrapelated” or “free-
streaming” quantities ¥,,.,, and X,,, provide the information needed for the
source terms, as well as the effective susceptibility and maguetlzatlon Tnversion of
3 x 3 matrices is required in steps (2) and (8).

"When =1 the d1 scheme is recovered, while when 8 =0 the resulting algonthm
is approximately time-centered and reversible and can thus (within that approxima-
tion) introduce no damping. The scheme would be completely reversible if (a) the
electric field were evaluated at integral positions x, rather than extrapolated posi-
tions %, and (b) the implicit field solution yielded a field that exactly corresponded
to sources at particle positions x, . ,; thus exact reversibility would be mpracncal
but measure (a) might reasonably be implemented.

TV. A PrACTICAL DIFFERENCE SCHEME: INTEGRAL CENTERING OF X AND v

It is convenient to employ an implicit particle advance with all key quantities
defined at integral (not staggered) time levels. This simplifies the initialization and
diagnostic parts of the code and opens the possibility of varying the timestep size
“between steps” in a multi-scale algorithm {9]. The Appendlx contains a derivation
of' a d1 algorithm with integral centering.

One enters a timestep with particle data x,, 1y Yu_1s 8,_n, Q,,_l, and with
E,, B, on the mesh. :

ALGORITHM 2
The “fAnal-push” is:

(1) in=xr:-—l+.dtvn—l .
(2) a,=/(g/m)E,(&,) (interpoldtion of field from mesh)
(3) vn—l/2=vn—1+(dt/2)|:an+vn—l/1xgn—1] o
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(4) X, =X,_, -!—Atv,,_l,;

(5) 1;:—1=(B/2) a,+(1-8/2}a,_,

(6) 4, ,=(1-8/2)a,+(6/2)a,_,

(Y 2,=(g/mc)B,(x,) (interpolation of field from mesh)

(8) n“__vu—-l/?._{_(dt/z)[gn—l+vu——l,f1x‘g2n]' . .

The pre-push is

-

(9) in+1 =X, +4dr Yo-

A single 3 x 3 matrix inversion is required, in step (3). In this algorithm we have
not calculated a ¥; such a step may be necessary if a self-consistent magnetic field
is to be included.

V. APPROXIMATE DISPERSION RELATION

An approximate dispersion relation for this algorithm as applied to motion in a
harmonic well can be derived by Fourier transforming in time. The inexactitude
arises from the assumption (as in Ref. [2]) that E, is interpolated at x, rather than
at %,, that is, a,= —wjx, rather than a,= —w¥(x,_, + 4t ¥,..;). One then
employs the single-step operator z=e~"4' 5o that X,=Xgz" etc.; here w is the
mode frequency obtained numerically. From Eq. {2) we have

4
xrz_zxn—1+xn—2=-2_ {an+ (9/2) a1 + (1 -_6/2) c-1‘11—3}‘ (15)

Use of the recurrence relation for @ enables one to rewrite this as

xn—zxn--l +xr=—2
4 : :

=% {an+ (3/2) Ian—.l..-i"(]- _6/2)2 [au—2+ (8/2) an—3+ (9/2)2 an—‘4+ e ]}

' ‘ ~(18)
'Subst'itutiﬁg'a,,% —d;gx,, etb. as mentioned above, then using x,=x,z" etc, and
finally summing the power series in (8/2) ==, the dispersion relation is

z—1) (22— 0)= —w} 42 2(z* + 1 —§). (17)

The dispersion relation for the 41 scheme was presented in [2] and acts as a usgeful
check on this result. When 8 is zero the equation becomes quadratic, |z| =1, and
the dispersion relation becomes

w At =arc tan[wq 41(1 + w2 A2/4); s

there is no damping whatsoever.
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Following a procedure similar to that used in Ref. [2], one can determine the
small-timestep behavior. The fuil dispersion relation is ‘
. 1 | 2gTiedi_g
[(2/wgy 4r) sin{e At/?.') T dwdi g

(19)

Expandiﬁg both left and right members, this becomes
wifw® + {1/3)(wq A2 =1+ (@ 4t)/(2 — 0) + i{w A1) 6/(2—8)* + ---. (20)
Finally,. one obtains
0, Jwo=1—w? AL[1/(4—20) — 24T + ---; | (21a)
Pwg= —0/12(2— 0] wl 43+ ---. {(21b).

There is less of a frequency reduction for the centered scheme than for the 41
scheme, and (as expected) no damping,

The cubic equation (17) has been solved numerically to obtain dispersion curves.
The results for the least-damped roots (these aré a conjugate pair) are shown in
Figs. 1 and 2; the third root is purely {and strongly) damped. In Fig. la |z| is
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plotted as a function of (w§ A1) |z| is just ¢? 4, and represents the fractional decay
of the oscillation during a single step. The various curves represent different values
of 8; from top to bottom, they are: =0, 02, 04, 0.6, 0.8, 1.0. In general, |z|
asymptotes to /(1 —8); for the d1 scheme |z| ~ (we A1)~ as it approaches zero.
Figure 1b depicts the real frequency w, (actually the phase angle in radians due to
one step, w, At) as a function of the same parameter. It was obtained using w, dt=
arc tan[ —Im(z)/Re{z)]. The top curve represents the d1 scheme, 8 = 1.0; the lower
(rather thick) curve represents all of the other values of § in the above list. The
dependence of w, upon 8 in this figure appears to be discontinuous; indeed, for the
d1 scheme the asymptotic value of w, 4t (as wo dt—~ o) is 2n/3, while for values
of 0 less than unity the asymptote is n/2.

Figure 2 is the same type of plot, but for values {from top to bottom in 2a} of
g=08, 0.9, 0.96, 0.98, 0.988, 0.996, and 1.0. The same values appear in the curves
in Fig. 2b but from bottom to top. These curves reveal that the transition, at large
but finite wg 41, to the d1 behavior, is indeed smooth. As the value of § is increased
toward unity, the maximum of c, 4t occurs at larger g At

From these figures it is clear that the damping can be made arbitrarily small, or
as large as that of the d1 scheme, through choice of 6. However, some choices of
9 yield anomalous dispersion. While #=1 (d1 scheme) and 0<8<08 yield a
monotone real frequency as a function of the harmonic-well frequency, values in the
range 0.8 <0< 1.0 lead to regimes wherein the observed frequency decreases as the

1
io
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Fic. 2. As in Fig. 1, but §=08, 0.9,-0.96, 0.98, 0.988, 0.996, 1.0
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harmonic-well frequency increases. These regimes are heavﬂy damped and are
unhkely to canse real difficulty in practice,

It is possible to. employ values of #> 1. For 1 <H <2 asymptotes to /(6 -1}
and so at large timestep the damping decreases with #. When 8> 2, |z| asymptotes
to a number greater than umity, and: so such values are -probably not -useful.
However, when # > 1 the least-damped root (in plots such as those above) does not
exhibit smooth behavior; as wy4: is increased beyond a certain critical value, a
different branch takes over as the least-damped root. For example, at 8=73/2 the
transition occurs at wgy 4t = 1, and beyond that point |z| 20.707 and w,=0. The
details of the dispersion should matter little in regimes where the damping is strong.

This dispersion relation indicates global stability for ail 4i In the following
section it is shown that such stability is a consequence of assuming that the future
force is interpolated at the true future position. In a typical implemention the 1
mover and the adjustable mover admit numerical instability in a fixed well.

VI ExacT DISPERSION RELATION

It is also possible to obtain an exact dispersion relation for motion in-2 harmonic
well using the mover presented here, i.e., with interpolation of the field at % The
algorithm employs

and solving for a,, one obtmns ,
_“[wn/(l‘“wn At-/'J}]x ' {23)
Thus one need only make the replacement

: wi A2
2 AP WA =—0
Godl W A = T Ar)2
everywhere the quantity on the left appears, to obtain the exact relation. For
example, the centered scheme (6 =0) has the exact dispersion relation; -

w At =arc tan[wg 41(1 — wj At2/4)”.2/(1 — w3 4£/2)]. (25}
For g At==1 this glves wdt=m/3, for a penod of six timesteps.

W, is monotone in wy unbl w, dt= ﬁ, where W, 4t becomes infinite; the
schemes begin to exhibit undesirable behavior beyond this point. The centered
scheme remains neutrally stable, with w, 4¢ increasing to =, until oy 42> =4. When
w2 At*=4, the difference scheme is: x,,,—2x,+x,_,=2(x,, +x,_}; the
motion admits a linear-in-time divergence of the orbit point, in a sequence such as
xp=1, x;,= =2, x,=3,.. Beyond w;4r'=4 the centered scheme exhibits

o= —03%, = —wd(x,—dF a?), 22)
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odd-even instability. The d1 scheme goes odd-even unstable somewhat earlier: for
wy 412 <2 there are damped oscillations; at 2, z is zero; between 2 and 24, the
mode is odd—even but damped; at 2.4, there is odd—even neutral stablhty, and
above 2.4, there is instability.

In contrast with its instability in a harmonic well, the 41 mover (with interpola-
tion at %) is observed to exhibit stable behavior in particle-in-ceil simulation codes
even at very large 4t To understand this, one begins by considering a possible
remedy to the instability in a fixed well. For stable behavior one would want to use:

a,= —Cﬂ%x"= —wg(j&_i_dtl a,,/?.), (26)

so that a,(1 + w2 42/2)= —w3% Thus to regain stability one should replace, for
any x, a(x) by a(x)/(1+wj 4¢*/2) in the particle advance. Then, folding in the
effect of interpolating at %, one obtains

wudr/(1+mudx/2 2 o
[ (@} 4/ + g a0 4" 27

Widr=

that is, the “approximate” dispersion relation with its global stability is recovered
by an appropriate rescaling of the depth of the potential well.

Now consider what happens in a self-consistent direct-implicit plasma simulation
code. If one assumes that wy=tw, is the highest frequency, most “numerically
dangerous” mode in the system, then the implicit field solver does indeed replace
the electric field E(x) by E(x)/(1+y), where the “effective susceptibility”

aJ 2 41* [6,8]. The code computes the free-streaming charge density g by
accumu.latmg contributions from partxcles at ¥; however, the restoring acceleration
is not mpr, but rather is —w x/(l +y); it has been reduced by just the factor
needed to keep W3 4#* positive and equal to w, 2 A%, The field solver serves to pre-
vent the mover's mstabﬂlty by adjusting the depth of the potential well. A similar
effect should reduce the field magnitude in implicit codes based upon the *moment
method” [1,10]. As result, the met dispersion relation in an electrostatic,
unmagnetized plasma simulation code (with interpelation at %) should most closely
resemble the “approximate” relation first presented.

Thus interpolation at ¥ appears to be quite reasonable for a code in which the
highest frequenicy oscillations are plasma waves. However, in codes which incor-
porate a fixed, non-self consistent field or a different set of equations, the system
may admit modes with frequencies higher than w,, and reduction of E by the factor
(1+3)~" may not suffice to keep ;4:® positive In such a case numerical
instability may arise.

VII. PARTICLE MovER TESTS

The. adjustable mover has been tested in a small code which advances test
particles in a (frozen) power-law potential. In Fig. 3 the results of such a calculation
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Fig. 3. Test of the 41 limit of the adjustable mover (#=1) in a harmonic potential. {a) x —» phase
plane; (b) position vs time.

in a harmonic weil are displayed. In these runs x, =4.6, we=1.0, and Ar=0.4217
Figure 3a is & sequence of points in the x — v phase plane; the orbit begins at the
point on the far right and spirals clockwise inward. Figure 3b is a time-history of
the position, From figures such as these one can obtain the real frequency and the
damping rate; these agree indenticaily (within very small measurement errors) with
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the exact dispersion relation presented above. In Fig. 4a the phase-plane trajectory
for #=1 is shown; the damping is clearly less rapid and the real frequency greater
than for the 41 scheme. Figure 4b shows the undamped trajectory obtained when
6 =0. Similar tests have confirmed the behavior for =0 and wy 4t*=4, and the
numerical instability of all schemes at larger timestep sizes.

VIII. Fuir DIRECT-IMPLICIT SIMULATION TESTS

The adjustable damping scheme has been implemented in a fixed step-size version
of the Multiscale Implicit Simulation Testbed code (MIST) [9]. The code is one-
dimensional and unmagnetized and uses “integral” centering of x and v. First, the
cold plasma dispersion function (Eq. (17)) was verified with several tests, One such
run employed 32 cells, 32 particles, A1=10, § = 3> Wae =1, system length = 1, frozen
ions, and the fundamental mode excited. For these parameters theory predicts
|z| =0.7206, w, 4t=1.5467. In Fig. 5 the feld energy is plotted as a function of
time. It falls 6.8 decades in 24 steps, thus the displacement dx falls by 3.4 decades,
and [z| =0.7217, well within the measurement error. The observed real frequency
w, 4t is clearly near w/2; the “beat” (varying amplitude) in the figure indicates that
the oscillation is not purely odd—even, in agreement with an analytical value /2.

Other tests examine free expansion of a plasma slab inte vacuum [117]. Three

10734
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FiG. 5. Cold plasma dispersion test, field energy vs time for run PLAD.,
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runs, with differing values of the damping parameter f, were carried out. The
parameters were: system length L=1, 4t=8, w,,=1, m;/m,=900; the run was
carried out until ¢, =20,000. There were 8192 particles of each species, 512 grid
points, and the initial slab length was 0.25. The electron thermal velocity was
Dy = 9.8 x 1077, that for the jons vy, ;=1.03x 1075,

In Fig. 6 are displayed the results of run 1, which used the 41 scheme (f=1).
Figure 6a is a snapshot of the ion density as a function of position at ¢=15,000;
it has been smoothed somewhat by averaging over 100 timesteps. The slab has
expanded so that the right-hand leading edge of the expansion has moved from
0.625 to almost 0.8. Figure 6b is the time-history of the total energy; a rapid falloff
from the initial value of 131 (normalized to 10~'') to a minimum of 98 ({at
t=28000), followed by a rise to 110, can be seen. The electron kinetic energy (not
shown) falls smoothly from 120 to 48 over the course of the run, while that of the
ipns rises from 12 to 61. It should be noted that the parameters for this run were
deliberately chosen to give a major failure of energy comservation; the 41 scheme
does not always do this poorly. -

In Fig. 7 the results of run 2, with #=0.6, are displayed; in this run the leading
edge is at or slightly beyond 0.8, and energy conservation is much improved: The
minimum of 118 is reached at about t=35000, and the subsequent rise brings the
total to 142, The electron kinetic energy falls to 65, the ion kinetic energy rising to
77. '

For run 3 shown in Fig. 8, the mover was adjusted to give very little damping,
§=02. The leading edge of the slab is at about 0.83, though the higher density
regions of the expansion and the rarefaction wave still agree well with those of the

10—

{a) L (h)
130}
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120}
o e
ok 110}

100
1073

% t

Fig. 6. Direct-implicit simulation test run 1 of plasma expansion into vacuum using adjustable
mover with §=1 (d1 limit): (a) snapshot of jon density at t=135,000; (b) time history of total enerpy.
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Fi@. 7. Asin Fig. 6, but run 2 using adjustable mover with §=0.6.

above runs. Energy conservation is quite poor; the total grows from 131 to 212 over
the course of the run. The electron kinetic energy falls only to 98, the ion kinetic
energy rising to 113. It is expected that the centered scheme (6 =0) would heat even
more rapidly. A larger timestep or thermal velocity would be expected to reduce the
heating and make small values of 8 the appropriate choice.

Of course, these diagnostics are quite crude, and energy conservation is only one
very pross measure of overall accuracy. Nonetheless, it seems quite clear that the

numerical damping imposed by the 41 scheme can be controlled by careful use of
the adjustable mover.

Tp— I
L (@)
w1}
Pk 1
W08 5" 30 .30 .40 .50 .60 .70 -B0 .80

X t
FiG. 8. Asin Fig 6and 7, bui run 3 with =02,
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IX. NoN-CONSTANT TIMESTEP AND DAMPING PARAMETER

For flexibility it is desirable to be able to vary the timestep size over the course
of a simulation, either globaily or on a particle-by-particle basis in a full multiscale
implementation [9]. It may also be desirable to alter the damping parameter
used for each particle’s trajectory calculation as the particle moves about in phase
space. One might even want to use different values of 8 for the different vectorial
components of the acceleration, for some anisotropic problems. Here it is shown
how the first two of these three objectives can be achieved while preserving time-
centering so that the overall accuracy of the computation is not compromised.
Further motivation for this topic is presented in the Discussion.

Our goal is to be able to double or halve the timestep size “between steps” in a
scheme which advances x and » from tln—1 to tla. To do this it is necessary to
modify the lag-averaged acceleration @. A restriction to factor-of-two changes in At
is imposed because (1) it is algorithmically convenient, and (2) more extreme
changes would generally result in the greater accuracy of the smaller step being
wasted because of large errors in the adjacent larger step. It is still possible to find
a step size within a factor of \/i of any desired target size.

First consider halving the step size, from 4! to df= AI/Z Before taking a step at
the new step size, compute

5;-—1/z=an/_2+5n—_1/2 (28)

and replace @ in the particle array with this quantity, This “more recent” lagged
average is defined at the appropriate time level for the new, smaller step to come.
It is straightforward to verify that for =0, &,_n=4a,_ l—a,,, while for =1,
-y 18 a re-lagged average as expected.
Slmﬂarly, one can double the step size to Dt =2 41, using

En—2=2ﬁn—t“am - (29)

and replace @ with this quantity. For #=0, a,,__=E _1=4a,, while for =1,
al’t— ﬂ,,_-:
If one wishes to change the dampmg parameter 8 to a new value (cail it ¢), this
~can be accomplished - while - preservmg the time-centering. -One must replace the
lag-averaged electric acceleration 4, _, W1th a new value, denoted by 5, ,. As an
ansatz, let

bo 1 =18, o+ (1=9)8,_,. - (30)
Equating time levels (see Eq. (6)), one has _
n—(¢/2)/(1—-9/2)= = yIn— 1= (6/2)/(1 = 6/2)]+ (1 —y)[n— (821~ /)] (31)

or

y=(B2)/(1 — 6/2) ~ (6/2)/(1 — 6/2). (32)
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A desirable property of these operations is that they commute. That is, halving

the step size and then doubling § is equivalent to performing the same operations
in the reverse order.

PPTTE SR UTTIRT DR RSN S R P i

X. DiscussioN AND DIRECTIONS FOR FUTURE RESEARCH

i bz
%

i Implicit PIC codes which employ damped equations of motion should not be
expected to conserve energy. Nonetheless, gross non-conservation of energy is likely
at the very least to make results difficult to interpret. In practice, one observes
reasonable energy conservation in a narrow valley of parameter space. That is, it
is desirable to retain, in the absence of spatial fiitering, the relation v, dijdx =
0.3+0.1 [3]. Larger timesteps lead to excessive damping, smaller ones to heating
‘ due to finite-grid instability (on a mesh with 4x3 ;) [13]. The timestep size,
! thermal velocity, mesh size, amount of spatial filtering, initial loading scheme (e.g.,
a quiet start), and number of simulation particles all affect the heating rate.
1 An important consideration in practical particle-in-cell plasma simulation is the
i prescription by which grid data are interpolated to the particle positions and by
which particle charge and eurrent are deposited on the mesh. The dispersion
relations obtained in Sections V and VI, with interpolation of the field at locations
x, and X, respectively, differ qualitatively. In this paper, grid effects have been
ignored in the dispersion analysis, and the spatial interpolant has been assumed
“exact.” Not explicitly discussed herein is the utility of high-order splines and/or
strong spatial smoothing. Such techniques may armeliorate grid aliasing and
: attendant errors in (e.g.) energy conservation, which are otherwise present when the
i mesh spacing is much larger than a Debye length (as is often the case in implicit
i simulations). A hazard that arises when one employs a damped algorithm is that
i one may operate in a regime where the finite-grid instability i§ strong and yet may
i obtain reasonable energy comservation by use of much damping. Under such
circumstances even large-scale physics might be poorly represented. A topic for
[uture research is the interplay of the spatial interpolant and the particle and feld
advances described herein, : T
The simple tests described herein show that the adjustable mover does in fact
work as expected. Its simplicity renders it easily retrofitted into any simulation code
i using the d1 mover with either “integral” or “staggered” centering. Indeed,
i implementation in MIST (integral centering) was completed in less than a half hour
and only a few lines of code were changed. Having an extra “knob to tune” is a
double-edged sword, as this increases the dimension of the parameter space. None-
il theless, the new mover should provide access to a wider range of problems than
i was previously possible,
! It is somewhat surprising that the 41 mover, as it is commonly implemented,
admits instability in a fixed well at values of the timestep which are quite moderate,
The restriction that trapping oscillations should be resolved [12] is related to this

-
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stability constraint. The reasons for the mover’s apparent stability in full simulation
codes are thus somewhat subtle. One should beware any fixed (externally specified)
fields whose magnitude is not subject to control by the self-consistent fieldsolver
and be careful to avoid violating the trapping frequency constraint.

The new adjustable mover does not significantly extend the regime of numerical
stability, but the analysis presented here suggests several possibilities. To suppress
the instabi]ity, were it to be observed in practice, onme might enlarge y beyond
z w, 2 A4¢* (taking into account externally imposed oscillations, not just plasma
Dscﬂlatlons), this is a variation of the “remedy” described above. Alternatively, the
force interpolation might be altered so that it used the field at the future position;
this might require iteration. Finally, a timestep control might be employed, either
globally (where practical) or in a muitiscale algorithm.

Explicit schemes with tunable damping properties similar to those of the implicit
algorithms presented here are readily obtained by extrapolating the electric compo-
nent of the acceleration forward (along the trajectory) by one timestep. Thus one
replaces a,.., by 2a,—a,_, and the particle advance no longer involves the field
at the future time level. Of course, the dispersion relation differs from that of the
implicit advance, and large-timestep stability cannot be obtained in this manner; in
fact, the stability constraint is slightly more severe than it is for the leapfrog
advance. Nonetheless, the noise-reduction aspects of the implicit advance are
preserved at small timestep. Indeed, the asymptotic damping behavior (but not the
real frequency shift) is identical. The real frequency approaches, for small timestep:

0 fwy=1—w} ALL8/4(2— 8)— 1/24] + ---. (33)

The scheme reverts to the leapfrog advance when the damping parameter- f is set
to zero; this is reflected in the above relation. Such schemes may have real utility
because they are simpler than 1mphclt methods, vet should yield quieter simulations
than undamped methods.

An implicit scheme similar to the d1 algorlthm is used to advance the electro-
magnetic feld in Ref [5]. Tt is straightforward to apply the adjustable implicit
algorithm to that problem as well. Langdon and Barnes have previously suggested
a different variably-damped implicit algorithm (a blend of the d1 and leaplrog
schemes) for the EM advance [8]; they note that the 41 fraction could be set
nonzero only where cells were small (to afford stability when the leapfrog Courant
condition on light wave propagation iy violated locally). The undamped leap{rog
advance could be used over the remainder of the mesh; by operating near the
stability boundary, improved dispersion might be obtained. Tests of their scheme;
and of the one derived from the partlcla ‘mover of this paper, are topics for future
study.

An adjustably-damped erphcxt EM advance is possible, and may be usefin] in
removing extraneous field noise in electromagnetlc codes. An easﬂy implemented
explicit scheme is '
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E,,H=E,,+cdthB,,+l,2—4:rrAt*J,,+1,2; {34a)
] 1 1 N
Bn+3/2=Bn+1/2"‘¢_-4fV>‘[(1_4'1)Eu+1“§En+(E—Z) r:—l:l: (34]3)
where
_ ) A _
Enm1=(1—5)En+5E,,_z. (35)

Or a one-dimensional spatial lattice with central differencing, a dispersion relation

for 2 mode with spatial wavenumber % can be obtained. Defining Q=
(¢ dt/Ax) sin{k 4x/2), one finds '

. fwdt . 26 sin*(w A1/2)
sm (-2_)=Q l:l —m:l (36)

For small w At, the damping is y 4~ —86/(2~8)* 2, and so v o (k 4x)*. This
class of methods is under active investigation, by itself and in combination with the
explicit damped particle advance mentioned above. The results of further analysis
and tests will be described in a future paper [14].

APPENDIX

Here the integral-level d1 scheme is derived from the staggered one. For the
staggered scheme, the final-push is

a

ne1 =408, 2+ (g/m) E,(%,)]
Bu—rj2=Uy_ 1+ (dt/2)(g/m) E(%,)

Xy =in -+ (Atz/?')(Q/nI) Er:(fn)'
Then, the pre-push is -
Pasip=Unsoyn+(dtj2) @,_,

Ene 1 =Xy A1, 5,

One moves the computation of %,+1 to the beginning of the final push, where it
becomes X, =x,_,+drd,_, j2- One then relabels 7, |5, calling it v, (it is formally
centered at tln, so this is perhaps a notational improvement). Thus:

By=v, 2+ (At/z) dy_
=1+ (4t2) @, + (d1/2)(g/m) E,(%,).
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Explicitly, the integral-level d1 algorithm final-push is:
(1) F=x,_,+4tv,_, '
(2} a={(g/m) E,(%) (interpolation of field from mesh)
(3) a,_,=3la+a,.,] l
4) v,=v,_ +{dy2)a,. .+ (dtf2)a
(5) x,=x+(d}2)a

(1]

The pre-push to the next time‘lavel is
(6) x=x,+4dtv,.
{(7) Using this new % compute p and y for the field solver.

As a [uorther step, one can interchange steps (3} and (4), replacing a,_, by its
definition in terms of a and a,_,: '

-2

(3) Ba=vpm i+ (3 di/A)a+(4Y4) a,_,
(4') &n—1=%[a+&nm2]' .

This form of the 41 scheme is clearly the 8 =1 limit of the adjustable mover.
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